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TECHNICAL NOTE 4090 .

ANATYSTS OF SHOCK MOTION IN DUCTS DURING
DISTURBANCES IN DOWNSTREAM PRESSURE

By Herbert G. Hurrell

SUMMARY

The effect of small downstream pressure disturbances on the position
of a normal shock in a duct with area variation is analyzed. For the
analysis, the gas flow 1s treated as quasi-one-dimensional, and boundary
lsyer is neglected. The analysis shows that there is & first-order lag
relstion between shock position and small downstream disturbances in
pressure which occur at frequencies below a given limit. The time con-
stant and the gain of this lag are expressed in terms of a dimensionless
time constant that depends-only on the steesdy-state Mach number of the
shock.

INTRODUCTION

When studying the dynamic behavior of propulsion systems for super-
sonic flight, numerous problems srise that involve the motion of shock
waves in ducts. In some of these problems, the shock defines one bound-
ary condition of the transient flow being analyzed. This cordition
occurs, for example, when the problem is one of determining the dynamics
of inlet diffusers for control purposes. In other problems, it is the
shock transient itself that is of primary concern. Such is the case when
en inlet diffuser with severe buzz characteristics is involved.

Several presentations of the basic theory of shock motion are to be
found in the literature; reference 1 is, perhaps, the most comprehensive.
In reference 2, however, the discussion is centered om the problems of
duct flows. In this reference, & linearized equation governing shock
motion is formulated for the case of a normal shock set off from its
equilibrium position in an otherwise steady flow. The relexstion time
for the return of the shock to equilibrium is thus determined and is used
in a discussion of shock-wave stability in diverging or comverging ducts.

In the present report, a linearized snalysis is made to define the
transient imposed on & normal shock by an unsteady downstream flow. The
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forcing variable of interest is the pressure downstream of the shock. .
The purpose is to present the dynamic relation between the shock position

and downstreeam pressure in a form reedily ussble in the study of engine

dynamics. . - . ¢

In the analysis, which is made for small perturbations of the shock,
the gas flow is treated as quasi-one-dimensional and boundary layer is
neglected. The treatment of the unsteady flow downstream of the moving
shock is simplified by imposing a frequency 1limit on the pressure disturb-
ance. The relation sought is derived as & Iaplace transfer function,
which is considered the most convenient form for most uses.

BYMBOLS .
A cross-sectional area of duect z B
a speed of sound
cP specific heat at constant pressure
c, specific heat at constant volume )
2 substantial derivative 0 + u 0
Dt ’ 3t 3x ]
k gain -
M Mach number .
P total pressure
i) stetlec pressure
S entropy
5 complex operator ~
t time
u gas velocity
v shock velocity relative to duct
X position coordinate (positive in downstreem direction}

T retio of specific heats -
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o density

a time constant

o! dimensionless time constant

(V] frequency

Subscripts:

ss steady state

T reference (or datum) values

£ total conditions (i.e., stagnation conditioms if gas is brought
to rest isentropically)

0] entering shock

1 leaving shock

2 at fixed station Jjust downstream of steady-state shock position

Superscript:

* critical conditions (i.e., conditions where gas velocity is equal

to sonic velocity)

ANATYSTS

Because of its extreme thinness, a shock wave may be treated as a
discontinuity with accuracy. With such a treatment, of course, the un-
steady terms vanish from the fundamental relations across the shock.
Flow conditions downstream of a moving shock, therefore, can be related
to those upstream by steady-state equations, provided that the velocities
used are relative to the shock. Hence, for a normal shock, moving at a
velocity v with respect to the duct, the pressures on the two sides of
1t are related as follows:

2
Z‘Y(Mo-a%) - (r - 1)

P; = Pg Y + 1

(1)

where all velocities are considered positive in the downstream direction.
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Consideration 1s now limited to small Perturbations from the steady-
state condition. When terms of higher order than these perturbations are
neglected, equation (1) yields . .

& A P1
Apl=r’hpo»40(mo-—")+55zxpo (2)

8o

where only the A quantities, which represent the small perturbations,
are time dependent; the coefficients of these varlables are steady-state
values. The omission of the higher order terms is tantamount to imposing
the following conditions:

—_— << 1

Mo 0
By

—_— << 1
Mo
Op
—-°-<<1
Po

The gas flow upstream of the shock, of course, is not affected by a
downstream disturbance. The varisbles AM, eand Apy in equation (2),
therefore, depend only on the area of the duct; and if the area varlation
is fixed, they are related to the shock position xg as follows:

o -(a5) (&), o .

o () (20,

88 886

The velocity of the shock can also be expressed in terms of shock posi-

tion since
a(Axq)

A =g —

where the position coordinate x is positive for the downstream
direction. -
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With the use of these expressions for AMg, Ap,, and Av, equation
(2) becomes

ol (3980, £ 20 (3030,

(3)

The shock movement Axg, therefore, is defined in terms of the pressure
change Ap;. This pressure variation occurs at the downstream face of
the moving shock. The procedure now is to relate Apl to the disturb-

ance of interest: a pressure disturbance occurring at a station just
downstream of the steady-state position of the shock. This fixed sta-
tion will be referred to as station 2.

The relation between Ap; and Ap, can be determined from the con-

tinuity and momentum equations of unsteady gas flow. For the quasi-one-
dimensional flow of a nonviscous gas (with no external forces), the equa-

tions are

Continuity:
o(puh) . O(pA) _
x T =0
Momentum:
du du 1
6_—t-+U.'&+E =0

From these fundamental equations and the relation
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Dovnstream of the moving shock, of course, each particle of gas maintains
a constant velue of .its entropy (a.lthough different particles will have
different entropies) The substantial derlvatﬁq.ve of entropy, therefore,
vanishes:

ot =0

In addition, if the sarea of the duct is not time dependent, the substan-
tial derivative of area reduces as follows:

DA _ 3
Dt~ Ox

With these simplifications, equations (4) become

%E%+(u+a)§g+a.[%%+(u+a)gl;] o
R du 2
%[g%+(u-a)%%—a&-+(u-a)&=—

In linearizing equations (5), it is convenient to make an assumption
that appears consistent with the quasi-one-dimensional treatment. It is
assumed that pertisl derivatives with respect to positiom x for the
steady-state condition are of the order of the small-perturbation quanti-
ties being considered. That is, the area variation of the duct is assumed
to be gradusl. Upon linearizing, therefore, for small perturbations from
the steady-state condition, equations (5) become

a
%[%ﬁg+(u+a)%§!]+a[%f—l+(u+a)%%%—-%%

;%E+(u-a)%]-a[§t—+(u-a-%ﬂ —E‘%—l%

where, once again, only the A quantities are time dependent

[+

g
g

(5)

o
o

>
R

(6)

For the purposes of the present analysis, equatioms (6) may be
greatly simplified. This simplification results from the fact that the
bracketed quantities in these equations represent differentiation along
the paths of the scmic waves. If the analysis, therefore, is limited to
trensients that are slow in relation to the transit times for sonic waves,
the partial derivatives with respect to time may be omitted from the wave-
path derivatives. Such a limitation is not overly restrictive for the
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problem considered herein. Therefore, with this limit imposed, equations
(6) may be written as

u+ a aAu afu AA
P %E+a.(u+a)ax =TTh X

L & 3

v+ &
u - a

(7)

Multiplying the secaond of equations (7) by and then adding the
result to the first of equations (7) yields the following :

z(u;az%h%(“u)%& (8)

u-8a

When equation (8) is multiplied by dx and no distinction is made between
the steady-state conditions of statioms 1 and 2, it can be integrated to

2

p1af v
1 uy - ag

which can be put into the following form:

2
Py M{ (AAO)

= - YA 4 10
21 =2 T E W - 1\BXo)y O (o)

where the limit can now be defined, frequencywise, as

al_-hul

a)<<-(Zx—6T'—- .

max

The relation between Ap; and Apz heving thus been determined, the
equation relating shock position &xg To the pressure disturbance of

interest Apz can now be formulated. This formulation is done by combin-
ing equation (10) with equation (3); the manipulation yields

& Mg P1 (4Po TP1 Mﬁ LA
heg = [%‘i 1 Pdmj(zza)ss_kiii _—_)Ss Y M2 -:;}(Ax') 0 -

OSS

pOMO d-(Axo)
réi 17s, 4t (1)
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From equation (11) it can readily be verified that, in the Laplace
domain, the first-order lag relation

Axo(s) 1
K,(5) " ETros (122)

exists. The time constant o and the gain k sare defined in terms of
a dimensionless quantity o' as follows:

A
1 0
0= o' (12b)
"o 'A?)
OSS
r+11 1 % 4o .
k=-LEis 2 2 2o (22¢)
v po M 8, (AAO)
AxOS'S
where
*
oo
an A
5t = OPOO (124)
_— * 2
M Mo\ ,r+1PiPof Po\ y+1P1ho M
A 2o “ PoPo\,Po £ Pohor .1
A¥* A%
OSS 88

Equation (12d) can be reduced to a simpler form by using the familiar
functions of M, that define the parameters_Lato/ao, An/Ays pl/po,

Po/po, and M; (ref. 3) and by considering the quentities v end
A——-
b *
I b/
AO to be equal to the corresponding derivatives. The reduced form
a2 --
A9

ss -
is as follows:

- 1,2)/?
2y +1) 1+L_2_1Mg)

0'1=:£-l
1+

(12e)

2
e + 1.2
Yy ~-1 MO



NACA TN 4090 g

Thus, the quantity o', which is called the dimensionless shock time
constant, is dependent only on the steady-state value of the shock Mach
number My. A curve showing the variation of the dimensionless time con-

stant with shock Mach number is presented in figure 1. (In determining
this curve, a value of 7/5 was used for y.) As can be seen from the
curve, o' varies only slightly for a wide range of Mach numbers 3 it is,
therefore, a convenient parsmeter to use.

With the curve of figure 1, it becames a simple procedure to calcu-
late the time constent o and the gain k +that define the shock dynamics
for a given duct and initial condition. As can be seen from equation

JAY:Y
(12b), the value of o will be positive for a diverging duct (——O- > O)

A,

and negative for a converging duct s < 0). These facts, of course,
0

are consistent with observed stability phenomens of normsl shocks and

with the conclusions of reference 2.

DA
For the special case of a constant-area duct (—9 = 0), equations

O
0
(12b) and (12c) show that both the shock time constant o and the gain
k are infinite. For this case, therefore, a more useful form of equa-
tion (12a) is as follows:
AXO(S) a 1
fp,(s) ~ I
2 X +

]

wla

which, for infinite o and k, gives

ax(s) 1

APZ(S) - -( 4r POMO)S

T+ 1 ag

In a constant-area duct, therefore, an integrator action exists between
shock position and a downstream disturbance in pressure, the integrator
rate being

1
4 PMo
Y +1 ag

In other words, the shock wave continues to move as long as the disturb-
ance is present. This, again, is consistent with experimental
observations. :
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CONCLUDING REMARKS

According to the small-perturbation analysis, a downstream disturb-
ance in pressure (within & specified frequenéy limit) causes the position
of a normsl shock in a duct to change in first-order lag manner. The
time constant and gain of this lag are functions of steady-state condi-
tions upstresm of the shock, the configuration of the duct, and a dimen-
sionless time constent that depends only on the steady-state value of the
shock Mach number. For the speciel case of a constant-area duct, this
lag reduces to an integrator action. )

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics
Cleveland, Ohio, July 12, 1857
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Figure 1. - Variation of dimensionless shock time conastant with shock Mach number.
%ﬁatio of speclific heats, 7/5.)
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